

# European Technical Assessment



English translation prepared by IETcc. Original version in Spanish language

# **General Part**

| Technical Assessment Body issuing<br>the ETA designated according to Art.<br>29 of Regulation (EU) 305/2011:          | Instituto de Ciencias de la Construcción Eduardo<br>Torroja (IETcc)                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trade name of the construction<br>product                                                                             | Anchor Sissy Stud                                                                                                                                                                                                                       |
| Product family to which the construction product belongs                                                              | Concrete screw of sizes 7.5, 10.5, 12.5 and 16.5 for use in cracked and non-cracked concrete.                                                                                                                                           |
| Manufacturer                                                                                                          | Joker Industrial Co. Ltd.<br>No 10 Changbin East 7rd.<br>Changbin Industrial District.<br>Hsien Hsi. Hsiang. Changua Hsien.<br>Taiwan R.O.C.<br>website: <u>www.joker.com.tw</u>                                                        |
| Manufacturing plant                                                                                                   | Joker Industrial Co. Ltd.<br>No 10 Changbin East 7rd.<br>Changbin Industrial District.<br>Hsien Hsi. Hsiang. Changua Hsien.<br>Taiwan R.O.C.                                                                                            |
| This European Technical<br>Assessment contains                                                                        | 11 pages including 4 annexes which form an<br>integral part of this assessment. Annex E contains<br>confidential information and is not included in the<br>European Technical Assessment when that<br>assessment is publicly available. |
| This European Technical<br>Assessment is issued in accordance<br>with regulation (EU) No 305/2011, on<br>the basis of | Guídeline for European Technical Approvals<br>ETAG 001 "Metal anchors for use in concrete" ed.<br>April 2013, Parts 1 and 3, used as European<br>Asessment Document (EAD).                                                              |
| This version replaces:                                                                                                | ETA 14 / 0374 issued on 09 /12 / 2014                                                                                                                                                                                                   |

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to article 25 paragraph 3 of Regulation (EU) n. 305/2011.

# SPECIFIC PART

#### 1. Technical description of the product

The Joker Sissy Stud concrete screw is an anchor made of carbon steel. The anchor is made in sizes 7.5, 10.5. 12.5 and 16.5, and is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The Joker Sissy Stud concrete screw anchor in the range of 7.5 to 16.5 corresponds to the pictures and provisions given in annexes A and B. The characteristic material values, dimensions and tolerances of the anchors not indicated in annexes A and B shall correspond to the respective values laid down in the technical documentations <sup>(1)</sup> of this European Technical Assessment.

For the installation process see figure given in annex C; for the installed anchor see figure given in annex D.

Each anchor head is marked with company logo, type, outer diameter and length.

The performance of the anchor, including installation data, characteristic anchor values, displacements and fire resistance, for the design of anchorages is given in chapter 3.

The anchor shall only be packaged and supplied as a complete unit.

#### 2. Specification of the intended use in accordance with the applicable EAD.

#### 2.1 Intended use

The anchor is intended to be used for anchorages for which requirements for mechanical resistance and stability, safety in case of fire and safety and accessibility in use in the sense of the basic requirements 1, 2 and 4 of Construction Product Regulation no 305/21011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

The anchor is to be used only for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength class C20/25 to C50/60, according to EN 206:. It may be anchored in cracked and non-cracked concrete.

The Joker Sissy Stud anchor may only be used in concrete subject to dry internal conditions.

The anchor may be used for anchorages with requirements related to resistance to fire.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The assumed working life is the foreseen period of time throughout which the construction product, as installed into the construction work, will keep its performances allowing the construction work, behaving under predictable actions and with normal maintenance, to meet the basic requirements for construction works.

#### 3. Performance of the product and references to the methods used for its assessment

<sup>(1)</sup> The quality plan has been deposited at Instituto de Ciencias de la Construcción Eduardo Torroja and is only made available to the approved bodies involved in the AVCP procedure.

The identification tests and the assessment for the intended use of this anchor according to the basic work requirements (BWR) were carried out in compliance with the ETAG 001. The characteristics of the components shall correspond to the respective values laid down in the technical documentation of this ETA, checked by IETcc.

#### 3.1 Mechanical resistance and stability (BWR 1)

Mechanical resistance and stability has been assessed according to ETAG 001 "Metal anchors to be used in concrete", parts 1 and 2.

| Instal           | Installation parameters                            |      | Performance |         |         |         |
|------------------|----------------------------------------------------|------|-------------|---------|---------|---------|
|                  |                                                    |      | SS 7.5      | SS 10.5 | SS 12.5 | SS 16.5 |
| d <sub>0</sub>   | Nominal diameter of drill bit:                     | [mm] | 6           | 8       | 10      | 14      |
| d <sub>f</sub>   | Diameter of clearance hole in fixture:             | [mm] | 9           | 12      | 14      | 18      |
| ds               | Outer diameter of the thread                       | [mm] | 7.5         | 10.5    | 12.5    | 16.5    |
| L <sub>min</sub> | in Total length of the anchor [mm]                 |      | 60          | 65      | 75      | 115     |
| L <sub>max</sub> | <ul> <li>Total length of the anchor</li> </ul>     | [mm] | 400         | 400     | 400     | 400     |
| h <sub>min</sub> | Minimum thickness of concrete member:              | [mm] | 100         | 100     | 105     | 175     |
| h <sub>1</sub>   | Depth of drilled hole:                             | [mm] | 65          | 70      | 85      | 130     |
| h <sub>nom</sub> | Overall anchor embedment depth in the<br>concrete: | [mm] | 55          | 60      | 70      | 110     |
| h <sub>ef</sub>  | Effective anchorage depth:                         | [mm] | 42          | 45      | 52      | 86      |
| T <sub>ins</sub> | Installation torque                                | [Nm] | 20          | 50      | 80      | 120     |
| t <sub>fix</sub> | Thickness of fixture                               | [mm] | L-55        | L-60    | L-70    | L-110   |
| S <sub>min</sub> | Minimum allowable spacing:                         | [mm] | 45          | 50      | 60      | 100     |
| C <sub>min</sub> | Minimum allowable edge distance:                   | [mm] | 45          | 50      | 60      | 100     |

| Characteristic values of resistance to tension loads |                                                                 |      |        | Perfor  | mance   |         |
|------------------------------------------------------|-----------------------------------------------------------------|------|--------|---------|---------|---------|
| of desig                                             | gn method A                                                     |      | SS 7.5 | SS 10.5 | SS 12.5 | SS 16.5 |
| Tensio                                               | n loads: steel failure                                          |      |        |         |         |         |
| N <sub>Rk,s</sub>                                    | Tension steel characteristic resistance:                        | [kN] | 18.7   | 32.7    | 51.2    | 115.9   |
| γMs                                                  | Partial safety factor: <sup>*)</sup>                            | [-]  | 1.5    | 1.5     | 1.5     | 1.5     |
| Tensio                                               | n loads: pull-out failure in concrete                           |      |        |         |         |         |
| N <sub>Rk,p, ucr</sub>                               | Tension characteristic resistance in C20/25 uncracked concrete: | [kN] | 9      | 12      | 20      | 40      |
| $\Psi_{c,ucr}$                                       | C30/37                                                          | [-]  | 1,22   | 1,08    | 1,04    | 1,04    |
| Ψ <sub>c,ucr</sub>                                   | C40/50                                                          | [-]  | 1,41   | 1,15    | 1,07    | 1,07    |
| Ψ <sub>c,ucr</sub>                                   | C50/60                                                          | [-]  | 1,55   | 1,19    | 1,09    | 1,09    |
| N <sub>Rk,p,cr</sub>                                 | Tension characteristic resistance in C20/25 cracked concrete:   | [kN] | 6      | 9       | 12      | 30      |
| $\Psi_{c,cr}$                                        | C30/37                                                          | [-]  | 1,22   | 1,22    | 1,22    | 1,12    |
| Ψ <sub>c,cr</sub>                                    | C40/50                                                          | [-]  | 1,41   | 1,41    | 1,41    | 1,23    |
| Ψ <sub>c,cr</sub>                                    | C50/60                                                          | [-]  | 1,55   | 1,55    | 1,55    | 1,30    |
| γмр                                                  | Partial safety factor: *)                                       | [-]  | 1.8    | 1.8     | 1.8     | 1.5     |
| Tensio                                               | n loads: concrete cone and splitting failu                      | re   |        |         |         |         |
| h <sub>ef</sub>                                      | Effective embedment depth:                                      | [mm] | 42     | 45      | 52      | 86      |
| γмс                                                  | Partial safety factor: *)                                       | [-]  | 1.8    | 1.8     | 1.8     | 1.5     |
| S <sub>cr,N</sub>                                    | Critical spacing:                                               | [mm] | 126    | 135     | 156     | 258     |
| C <sub>cr,N</sub>                                    | Critical edge distance:                                         | [mm] | 63     | 67      | 78      | 129     |
|                                                      | Critical spacing (splitting):                                   | [mm] | 126    | 135     | 177     | 292     |
|                                                      | Critical edge distance (splitting):                             | [mm] | 63     | 67      | 88      | 146     |
| γMsp                                                 | Partial safety factor: *)                                       | [-]  | 1.8    | 1.8     | 1.8     | 1.5     |

\*) In absence of other national regulations

| Displ           | Displacements under tension loads in uncracked               |      |        | Performance |         |         |  |  |
|-----------------|--------------------------------------------------------------|------|--------|-------------|---------|---------|--|--|
| conci           | rete                                                         |      | SS 7.5 | SS 10.5     | SS 12.5 | SS 16.5 |  |  |
| Ν               | Service tension load in uncracked concrete C20/25 to C50/60: | [kN] | 3.6    | 4.8         | 9.5     | 19.0    |  |  |
| δ <sub>N0</sub> | Short term displacement under tension loads:                 | [mm] | 0.4    | 0.4         | 0.4     | 0.9     |  |  |
| δ <sub>N∞</sub> | Long term displacement under tension loads:                  | [mm] | 1.0    | 1.1         | 1.4     | 1.4     |  |  |

| Displ           | Displacements under tension loads in cracked               |      |        | Performance |         |         |  |
|-----------------|------------------------------------------------------------|------|--------|-------------|---------|---------|--|
| conc            | rete                                                       |      | SS 7.5 | SS 10.5     | SS 12.5 | SS 16.5 |  |
| Ν               | Service tension load in cracked concrete C20/25 to C50/60: | [kN] | 2.4    | 3.6         | 5.7     | 11.9    |  |
| $\delta_{N0}$   | Short term displacement under tension loads:               | [mm] | 0.6    | 0.7         | 0.5     | 0.6     |  |
| δ <sub>N∞</sub> | Long term displacement under tension loads:                | [mm] | 1.4    | 1.2         | 1.4     | 1.2     |  |

| Characteristic values of resistance to shear loads of |                                              |        | Perfor  | mance   |         |       |
|-------------------------------------------------------|----------------------------------------------|--------|---------|---------|---------|-------|
| design method A                                       |                                              | SS 7.5 | SS 10.5 | SS 12.5 | SS 16.5 |       |
| Shear                                                 | loads: steel failure without lever arm       |        |         |         |         |       |
| V <sub>Rk,s</sub>                                     | Shear steel characteristic resistance:       | [kN]   | 7.5     | 16.3    | 35.6    | 57.9  |
| γMs                                                   | Partial safety factor: $*$                   | [-]    | 1.25    | 1.25    | 1.25    | 1.25  |
| Shear                                                 | loads: steel failure with lever arm          |        |         |         |         |       |
| M <sup>0</sup> <sub>Rk,s</sub>                        | Characteristic bending moment:               | [Nm]   | 15.2    | 35.3    | 69.3    | 235.9 |
| γMs                                                   | Partial safety factor: *)                    | [-]    | 1.25    | 1.25    | 1.25    | 1.25  |
| Shear                                                 | loads: concrete pryout failure               |        |         |         |         |       |
| K                                                     | K factor:                                    | [-]    | 1       | 1       | 1       | 2     |
| γ <sub>Mpr</sub>                                      | Partial safety factor: *)                    | [-]    | 1.5     | 1.5     | 1.5     | 1.5   |
| Shear                                                 | loads: concrete edge failure                 |        |         |         |         |       |
| l <sub>f</sub>                                        | Effective anchorage depth under shear loads: | [mm]   | 42      | 45      | 52      | 86    |
| d <sub>nom</sub>                                      | Outside anchor diameter:                     | [mm]   | 7.5     | 10.5    | 12.5    | 16.5  |
| γмс                                                   | Partial safety factor: *)                    | [-]    | 1.5     | 1.5     | 1.5     | 1.5   |

\*) In absence of other national regulations

| Diant           | Displacements under shear loads                                           |      |     | Perfomances |         |         |  |
|-----------------|---------------------------------------------------------------------------|------|-----|-------------|---------|---------|--|
| Dispi           | acements under snear loads                                                |      |     | SS 10.5     | SS 12.5 | SS 16.5 |  |
| V               | Service shear load in cracked and uncracked<br>concrete C20/25 to C50/60: | [kN] | 3.0 | 6.5         | 12.2    | 27.6    |  |
| $\delta_{V0}$   | Short term displacement under shear loads:                                | [mm] | 1.3 | 1.4         | 1.8     | 2.3     |  |
| δ <sub>V∞</sub> | Long term displacement under shear loads:                                 | [mm] | 2.0 | 2.1         | 2.7     | 3.5     |  |

# Information for design of anchorages under shear loads:

In general the conditions given in ETAG 001, Annex C, section 4.2.2.1 a) and 4.2.2.2. b) are not fulfilled because the diameter of the clearance hole in the fixture (see "Installation parameters" table) is greater than the values given in Annex C table 4.1 for the corresponding diameter of the anchor. For anchors groups with n > 1 the characteristic load resistance  $V^g_{Rk,s}$  should be limited to max 2  $V_{Rk,s}$  However for each specific anchor length the manufacturer may specify the thickness of fixture for which these conditions are fulfilled.

# 3.2 Safety in case of fire (BWR 2)

Reaction to fire has been assessed according to Commission Decision 96/603/EC, amended by 2000/605/EC. See class in table below:

| Reaction to fire                      | SS 7.5 | SS 10.5 | SS 12.5 | SS 16.5 |
|---------------------------------------|--------|---------|---------|---------|
| Reaction to fire anchor Sissy Stud [] |        | Cla     | ss A1   |         |

Resistance to fire has been assessed according to Technical Report 020: "Evaluation of anchorages in concrete concerning resistance to fire"

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | SS 7.5                                                                | SS 10.5                                                                | SS 12.5                                                                | SS 16.5                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Fire resistance duration = 30 minutes Tension loads, steel failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | 00 7.5                                                                | 00 10.5                                                                | 00 12.0                                                                | 00 10.5                                                                 |
| N <sub>Rk,s,fi,30</sub> Characteristic resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [kN]                                         | 0.23                                                                  | 0.61                                                                   | 1.28                                                                   | 2.90                                                                    |
| Pull-out failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | []                                           | 0.20                                                                  | 0.01                                                                   | 1120                                                                   | 2.00                                                                    |
| N <sub>Rk,p,fi,30</sub> Character. resistance in concrete C20/25 to C50/60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [kN]                                         | 1.50                                                                  | 2.25                                                                   | 3.00                                                                   | 7.50                                                                    |
| Concrete cone failure ** <sup>)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                                       |                                                                        |                                                                        |                                                                         |
| N <sub>Rk,c,fi,30</sub> Character. resistance in concrete C20/25 to C50/60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [kN]                                         | 2.06                                                                  | 2.45                                                                   | 3.51                                                                   | 12.35                                                                   |
| Shear loads steel failure without lever arm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                                       | •                                                                      |                                                                        |                                                                         |
| V <sub>Rk,s,fi,30</sub> Characteristic resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [kN]                                         | 0.23                                                                  | 0.61                                                                   | 1.28                                                                   | 2.90                                                                    |
| Shear loads, steel failure with lever arm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                       | _                                                                      |                                                                        |                                                                         |
| M <sub>Rk,s,fi,60</sub> Characteristic bending resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [Nm]                                         | 0.19                                                                  | 0.66                                                                   | 1.73                                                                   | 5.90                                                                    |
| Fire resistance duration = 60 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | 66 7 E                                                                | 66 40 E                                                                | 66 40 E                                                                | 66 46 E                                                                 |
| Tension loads, steel failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | SS 7.5                                                                | SS 10.5                                                                | SS 12.5                                                                | SS 16.5                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [kN]                                         | 0.21                                                                  | 0.53                                                                   | 0.96                                                                   | 2.17                                                                    |
| NRk,s,fi,60         Characteristic resistance           Pull-out failure         Pull-out failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [KN]                                         | 0.21                                                                  | 0.00                                                                   | 0.30                                                                   | 2.17                                                                    |
| N <sub>Rk,p,fi,60</sub> Character. resistance in concrete C20/25 to C50/60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [kN]                                         | 1.50                                                                  | 2.25                                                                   | 3.00                                                                   | 7.50                                                                    |
| Concrete cone failure **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                                                                       |                                                                        |                                                                        |                                                                         |
| N <sub>Rk,c,fi,60</sub> Character. resistance in concrete C20/25 to C50/60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [kN]                                         | 2.06                                                                  | 2.45                                                                   | 3.51                                                                   | 12.35                                                                   |
| Shear loads, steel failure without lever arm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                       |                                                                        | I                                                                      |                                                                         |
| V <sub>Rk,s,fi,60</sub> Characteristic resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [kN]                                         | 0.21                                                                  | 0.53                                                                   | 0.96                                                                   | 2.17                                                                    |
| Shear loads, steel failure with lever arm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                       |                                                                        |                                                                        |                                                                         |
| M <sub>Rk,s,fi,60</sub> Characteristic bending resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [Nm]                                         | 0.17                                                                  | 0.57                                                                   | 1.30                                                                   | 4.42                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                                                       |                                                                        |                                                                        |                                                                         |
| Fire resistance duration = 90 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | SS 7.5                                                                | SS 10.5                                                                | SS 12.5                                                                | SS 16.5                                                                 |
| Tanaian laada, ataal failura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                       |                                                                        | •                                                                      |                                                                         |
| Tension loads, steel failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [LN]                                         | 0.16                                                                  | 0.41                                                                   | 0.83                                                                   | 1 99                                                                    |
| N <sub>Rk,s,fi,90</sub> Characteristic resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [kN]                                         | 0.16                                                                  | 0.41                                                                   | 0.83                                                                   | 1.88                                                                    |
| N <sub>Rk,s,fi,90</sub> Characteristic resistance<br>Pull-out failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                                       |                                                                        |                                                                        |                                                                         |
| N <sub>Rk,s,fi,90</sub> Characteristic resistance           Pull-out failure           N <sub>Rk,p,fi,90</sub> Character. resistance in concrete C20/25 to C50/60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [kN]<br>[kN]                                 | 0.16                                                                  | 0.41                                                                   | 0.83                                                                   | 1.88<br>7.50                                                            |
| N <sub>Rk,s,fi,90</sub> Characteristic resistance           Pull-out failure           N <sub>Rk,p,fi,90</sub> Character. resistance in concrete C20/25 to C50/60           Concrete cone failure **)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [kN]                                         | 1.50                                                                  | 2.25                                                                   | 3.00                                                                   | 7.50                                                                    |
| N <sub>Rk,s,fi,90</sub> Characteristic resistance           Pull-out failure           N <sub>Rk,p,fi,90</sub> Character. resistance in concrete C20/25 to C50/60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                                       |                                                                        |                                                                        |                                                                         |
| N <sub>Rk,s,fi,90</sub> Characteristic resistance           Pull-out failure           N <sub>Rk,p,fi,90</sub> Character. resistance in concrete C20/25 to C50/60           Concrete cone failure **)           N <sub>Rk,c,fi,90</sub> Character. resistance in concrete C20/25 to C50/60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [kN]                                         | 1.50                                                                  | 2.25                                                                   | 3.00                                                                   | 7.50                                                                    |
| NRk,s,fi,90       Characteristic resistance         Pull-out failure         NRk,p,fi,90       Character. resistance in concrete C20/25 to C50/60         Concrete cone failure **)         NRk,c,fi,90       Character. resistance in concrete C20/25 to C50/60         Shear loads, steel failure without lever arm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [kN]                                         | 1.50<br>2.06                                                          | 2.25                                                                   | 3.00<br>3.51                                                           | 7.50                                                                    |
| N <sub>Rk,s,fi,90</sub> Characteristic resistance         Pull-out failure         N <sub>Rk,p,fi,90</sub> Character. resistance in concrete C20/25 to C50/60         Concrete cone failure **)         N <sub>Rk,c,fi,90</sub> Character. resistance in concrete C20/25 to C50/60         Shear loads, steel failure without lever arm         V <sub>Rk,s,fi,90</sub> Character. resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [kN]                                         | 1.50<br>2.06                                                          | 2.25                                                                   | 3.00<br>3.51                                                           | 7.50                                                                    |
| NRk,s,fi,90       Characteristic resistance         Pull-out failure         NRk,p,fi,90       Character. resistance in concrete C20/25 to C50/60         Concrete cone failure **)         NRk,c,fi,90       Character. resistance in concrete C20/25 to C50/60         Shear loads, steel failure without lever arm         V <sub>Rk,s,fi,90</sub> Characteristic resistance         Shear loads, steel failure with lever arm         M <sub>Rk,s,fi,90</sub> Characteristic bending resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [kN]                                         | 1.50<br>2.06<br>0.16<br>0.13                                          | 2.25<br>2.45<br>0.41<br>0.44                                           | 3.00<br>3.51<br>0.83<br>1.13                                           | 7.50<br>12.35<br>1.88<br>3.83                                           |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [kN]                                         | 1.50<br>2.06<br>0.16                                                  | 2.25<br>2.45<br>0.41                                                   | 3.00<br>3.51<br>0.83                                                   | 7.50<br>12.35<br>1.88                                                   |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [kN]<br>[kN]<br>[kN]                         | 1.50<br>2.06<br>0.16<br>0.13<br><b>SS 7.5</b>                         | 2.25<br>2.45<br>0.41<br>0.44<br><b>SS 10.5</b>                         | 3.00<br>3.51<br>0.83<br>1.13<br><b>SS 12.5</b>                         | 7.50<br>12.35<br>1.88<br>3.83<br><b>SS 16.5</b>                         |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [kN]                                         | 1.50<br>2.06<br>0.16<br>0.13                                          | 2.25<br>2.45<br>0.41<br>0.44                                           | 3.00<br>3.51<br>0.83<br>1.13                                           | 7.50<br>12.35<br>1.88<br>3.83                                           |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [kN]<br>[kN]<br>[kN]<br>[Nm]                 | 1.50<br>2.06<br>0.16<br>0.13<br><b>SS 7.5</b><br>0.12                 | 2.25<br>2.45<br>0.41<br>0.44<br><b>SS 10.5</b><br>0.33                 | 3.00<br>3.51<br>0.83<br>1.13<br><b>SS 12.5</b><br>0.64                 | 7.50<br>12.35<br>1.88<br>3.83<br><b>SS 16.5</b><br>1.45                 |
| $\begin{tabular}{ c c c c } \hline N_{Rk,s,fi,90} & Characteristic resistance & \\ \hline Pull-out failure & \\ \hline N_{Rk,p,fi,90} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,90} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Shear loads, steel failure without lever arm & \\ \hline V_{Rk,s,fi,90} & Characteristic resistance & \\ \hline Shear loads, steel failure with lever arm & \\ \hline M_{Rk,s,fi,90} & Characteristic bending resistance & \\ \hline \hline Fire resistance duration = 120 minutes & \\ \hline Tension loads, steel failure & \\ \hline N_{Rk,s,fi,120} & Characteristic resistance & \\ \hline Pull-out failure & \\ \hline N_{Rk,p,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [kN]<br>[kN]<br>[kN]                         | 1.50<br>2.06<br>0.16<br>0.13<br><b>SS 7.5</b>                         | 2.25<br>2.45<br>0.41<br>0.44<br><b>SS 10.5</b>                         | 3.00<br>3.51<br>0.83<br>1.13<br><b>SS 12.5</b>                         | 7.50<br>12.35<br>1.88<br>3.83<br><b>SS 16.5</b>                         |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [kN]<br>[kN]<br>[kN]<br>[Nm]                 | 1.50<br>2.06<br>0.16<br>0.13<br><b>SS 7.5</b><br>0.12                 | 2.25<br>2.45<br>0.41<br>0.44<br><b>SS 10.5</b><br>0.33                 | 3.00<br>3.51<br>0.83<br>1.13<br><b>SS 12.5</b><br>0.64                 | 7.50<br>12.35<br>1.88<br>3.83<br><b>SS 16.5</b><br>1.45                 |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [kN]<br>[kN]<br>[kN]<br>[Nm]<br>[kN]         | 1.50<br>2.06<br>0.16<br>0.13<br><b>SS 7.5</b><br>0.12<br>1,20         | 2.25<br>2.45<br>0.41<br>0.44<br><b>SS 10.5</b><br>0.33<br>1.80         | 3.00<br>3.51<br>0.83<br>1.13<br><b>SS 12.5</b><br>0.64<br>2.40         | 7.50<br>12.35<br>1.88<br>3.83<br><b>SS 16.5</b><br>1.45<br>6.00         |
| $\begin{tabular}{ c c c c } \hline N_{Rk,s,fi,90} & Characteristic resistance & \\ \hline Pull-out failure & \\ \hline N_{Rk,p,fi,90} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,90} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Shear loads, steel failure without lever arm & \\ \hline V_{Rk,s,fi,90} & Characteristic resistance & \\ \hline Shear loads, steel failure with lever arm & \\ \hline M_{Rk,s,fi,90} & Characteristic bending resistance & \\ \hline \hline Fire resistance duration = 120 minutes & \\ \hline Tension loads, steel failure & \\ \hline N_{Rk,s,fi,120} & Characteristic resistance & \\ \hline Pull-out failure & \\ \hline N_{Rk,s,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Shear loads, steel failure without lever arm & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Shear loads, steel failure without lever arm & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Shear loads, steel failure without lever arm & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Shear loads, steel failure without lever arm & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in $                   | [kN]<br>[kN]<br>[kN]<br>[Nm]<br>[kN]         | 1.50<br>2.06<br>0.16<br>0.13<br><b>SS 7.5</b><br>0.12<br>1,20         | 2.25<br>2.45<br>0.41<br>0.44<br><b>SS 10.5</b><br>0.33<br>1.80         | 3.00<br>3.51<br>0.83<br>1.13<br><b>SS 12.5</b><br>0.64<br>2.40         | 7.50<br>12.35<br>1.88<br>3.83<br><b>SS 16.5</b><br>1.45<br>6.00         |
| $\begin{tabular}{ c c c } \hline N_{Rk,s,fi,90} & Characteristic resistance & \\ \hline Pull-out failure & \\ \hline N_{Rk,p,fi,90} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,90} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Shear loads, steel failure without lever arm & \\ \hline V_{Rk,s,fi,90} & Characteristic resistance & \\ \hline Shear loads, steel failure with lever arm & \\ \hline M_{Rk,s,fi,90} & Characteristic bending resistance & \\ \hline \hline Fire resistance duration = 120 minutes & \\ \hline Tension loads, steel failure & \\ \hline N_{Rk,s,fi,120} & Characteristic resistance & \\ \hline Pull-out failure & \\ \hline N_{Rk,s,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Shear loads, steel failure without lever arm & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. resistance in concrete C20/25 to C50/60 & \\ \hline Concrete cone failure **) & \\ \hline N_{Rk,c,fi,120} & Character. \\ \hline Concrete cone failure **) & \\ \hline Concrete cone failure ** & \\ \hline Concre$ | [kN]<br>[kN]<br>[kN]<br>[kN]<br>[kN]<br>[kN] | 1.50<br>2.06<br>0.16<br>0.13<br><b>SS 7.5</b><br>0.12<br>1,20<br>1.65 | 2.25<br>2.45<br>0.41<br>0.44<br><b>SS 10.5</b><br>0.33<br>1.80<br>1.96 | 3.00<br>3.51<br>0.83<br>1.13<br><b>SS 12.5</b><br>0.64<br>2.40<br>2.81 | 7.50<br>12.35<br>1.88<br>3.83<br><b>SS 16.5</b><br>1.45<br>6.00<br>9.88 |

| Spacing and edge distances |                                        | SS 7.5 | SS 10.5 | SS 12.5 | SS 16.5 |     |
|----------------------------|----------------------------------------|--------|---------|---------|---------|-----|
| S <sub>cr,N</sub>          | Spacing                                | [mm]   | 168     | 180     | 208     | 344 |
| $S_{\text{min}}$           | Minimum spacing                        | [mm]   | 45      | 50      | 60      | 100 |
| C <sub>cr,N</sub>          | Edge distance                          | [mm]   | 84      | 90      | 104     | 172 |
| C <sub>min</sub>           | Minimum edge distance (one side fire)  | [mm]   | 84      | 90      | 104     | 172 |
| C <sub>min</sub>           | Minimum edge distance (two sides fire) | [mm]   | 300     | 300     | 300     | 300 |
| γ́Msp                      | Partial safety factor <sup>*)</sup>    | [-]    | 1.0     | 1.0     | 1.0     | 1.0 |

\*) In absence of other national regulations

\*\*) As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

| Concrete pry-out failure                                                                             | SS 7.5              | SS 10.5                | SS 12.5          | SS 16.5        |
|------------------------------------------------------------------------------------------------------|---------------------|------------------------|------------------|----------------|
| K factor []                                                                                          | 1                   | 1                      | 1                | 2              |
| In Eq. (5.6) of ETAG 001 Annex C, 5.2.2.3, these values of k factor and the considered in the design | e relevant values o | of $N_{Rk,c,fi}$ given | in the above tab | les have to be |

#### Concrete edge failure

The characteristic resistance  $V_{RK,c,fi}^0$  in C20/25 to C50/60 concrete is determined by:  $V_{RK,c,fi}^0 = 0.25 \times V_{RK,c}^0 (\leq R90)$  and  $V_{RK,c,fi}^0 = 0.20 \times V_{RK,c}^0$  (R120) With  $V_{RK,c}^0$  initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature according to ETAG 001, Annex C, 5.2.3.4.

# 3.3 Hygiene, health and the environment (BWR 3)

This requirement is not relevant for the anchor.

# 3.4 Safety in use (BWR 4)

Requirements with respect to the safety in use are not included in this Essential Requirement but are treated under the Essential Requirement Mechanical Resistance and Stability (see section 3.1)

# 3.5 **Protection against noise (BWR 5)**

This requirement is not relevant for the anchor.

# 3.6 Energy economy and heat retention (BWR 6)

This requirement is not relevant for the anchor.

# 3.7 Sustainable use of natural resources (BWR 7)

No Performance Determined

# 4. System of assessment and verification of constancy of performance

According to the decision 96/582/EC of the European Commission <sup>(2)</sup> the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies:

| Product                            | Intended use                                                      | Level or class | System |
|------------------------------------|-------------------------------------------------------------------|----------------|--------|
| Joker Sissy Stud<br>concrete screw | To be used for fixing<br>and/or supporting<br>structural elements | All / any      | 1      |

<sup>(2)</sup> Published in the Official Journal of the European Union (OJEU) L254 of 24.06.1996 See www.new.eur-lex.europa.eu/oj/direct-access.html)

The system 1 referred above is described in Construction Products Regulation (EU) no. 305/211 Annex V §. 1.3 as follows:

- a) The manufacturer shall carry out:
  - (i.) Factory production control.
  - (ii.) Further testing of samples taken at the factory by the manufacturer in accordance with the prescribed quality plan;
- b) The notified production control certification body shall issue the certificate of constancy of performance on the basis of:
  - (i.) Determination of the product-type on the basis of type testing (including sampling) calculation, tabulated values of descriptive documentation of the product.
  - (ii.) Initial inspection of factory and of factory production control.
  - (iii.) Continuous surveillance, assessment and evaluation of factory production

# 5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

The ETA is issued for these anchors on the basis of agreed data/information which identifies the product that has been assessed and judged. Detailed description and conditions of the manufacturing process of the anchors, and all the relevant design and installation criteria of these anchors are specified in the manufacturer's technical documentation deposited with the IETcc. The main aspects of this information are specified in the following sections. It is the manufacturer's responsibility to make sure that all those who use the anchors are appropriately informed of specific conditions according to sections 1, 2, 4 and 5 including the annexes of this ETA.

#### 5.1 Tasks of the manufacturer

#### 5.1.1 Factory production control

The manufacturer has a factory production control system and shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this ETA.

The manufacturer shall only use raw materials supplied with the relevant inspection documents as laid down in the quality plan <sup>(3)</sup>. The incoming raw materials shall be subjected to controls by the manufacturer before acceptance. Check of materials shall include control of the inspection documents presented by suppliers by verifying dimension and material properties, e.g. chemical composition, mechanical properties etc. The manufactured components are checked visually, for dimensions and properties, where appropriate.

The quality plan which is part of the Technical Documentation of this ETA, includes details of the extent, nature and frequency of testing and controls to be performed within the factory production control and has been agreed between the assessment holder and IETcc. The results of factory production control shall be recorded and evaluated in accordance with the provisions of the qualityl plan. The records include at least the following information:

• Designation of the product, the basic materials and components;

<sup>&</sup>lt;sup>(3)</sup> the quality plan has been deposited at IETcc and is only made available to the approval bodies involved in the ACVP procedure.

- Type of control or testing and minimum frequencies of them;
- Date of manufacture of the product and date testing of the product or basic material and components;
- Results of controls and testing and, if appropriate, comparison with requirements;
- Signature of person responsible for factory production control.

The records shall be presented to the notified body involved in the continuous surveillance. On request, they shall be presented to the IETcc.

#### 5.2 Tasks of notified bodies

5.2.1 Determination of the product-type on the basis of type testing

For type-testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between ETA holder and the notified body.

5.2.2 Initial inspection of factory and of factory production control

The notified body shall ascertain that, in accordance with the quality plan, the factory and the factory production control are suitable to ensure continuous and orderly manufacturing of the product according to the specifications mentioned in Annexes of this the European Technical Assessment.

5.2.3 Continuous surveillance, assessment and evaluation of factory production control

The notified body shall visit the factory at least once a year for regular inspection.

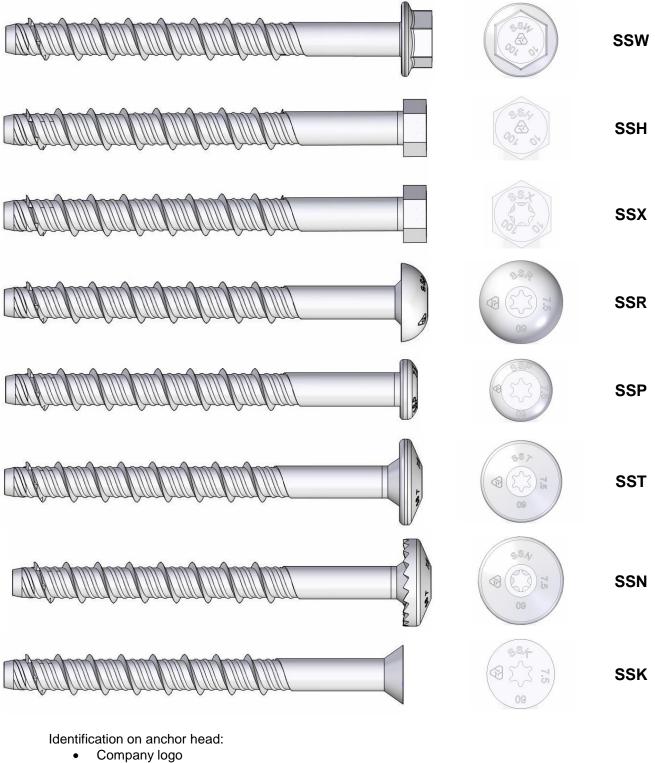
This continuous surveillance and assessment of factory production control have to be performed according to the quality plan. The system of factory production control and the specified manufacturing process have to be verified that they are maintained as the quality plan defined. The results of product certification and continuous surveillance shall be made available on demand by the product certification body or factory production control body, respectively, to IETcc. In cases where the provisions of the European Technical Assessment and the quality plan are no longer fulfilled the certificate of constancy of performance shall be withdrawn.



Instituto de ciencias de la construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS



C/ Serrano Galvache n.º 4. 28033 Madrid. Tel: (+34) 91 302 04 40 Fax. (+34) 91 302 07 00 www.ietcc.csic.es


On behalf of the Instituto de Ciencias de la Construcción Eduardo Torroja Madrid, 23<sup>rd</sup> of September 2016

Marta M<sup>a</sup> Castellote Armero Director

#### **INDEX OF ANNEXES**

Annex A: Anchor Annex B. Materials Annex C. Installation process Annex D. Schema of the anchor in use

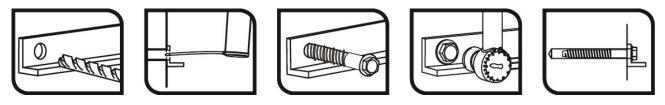
# Annex A: Anchor



- Anchor type:
  - Hex head with washer: SSW
  - Hex head:
  - Hex head, hexalobular recess:

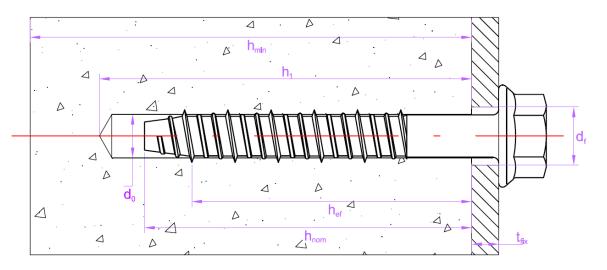
| 0 | Round head: | SSR |
|---|-------------|-----|
| 0 | Pan head:   | SSP |
| 0 | Truss head: | SST |

- Truss head: 0
- Truss head with underhead ribs: 0
- Countersunk head: 0
- Outer diameter
- Length


#### Annex B. Materials

| Item | Designation | Sissy Stud                                                                                                               |
|------|-------------|--------------------------------------------------------------------------------------------------------------------------|
| 1    | Anchor Body | Carbon steel wire rod cold forged.<br>Allowed coatings:<br>Zinc plated ISO 4042<br>Silver ruspert<br>Zinc flake EN 10683 |

SSN


SSK

# Annex C. Installation process



Anchor shall be installed using a torque wrench or an electrical impact driver; power input: 500 W; torque: 50-250 Nm. (e.g: Bosch GDS 18E)

# Annex D. Schema of the anchor in use



- Effective anchorage depth h<sub>ef</sub>:
- $h_1$ : Depth of drilled hole
- Overall anchor embedment depth in the concrete h<sub>nom</sub>:
- Minimum thickness of concrete member h<sub>min</sub>:
- Thickness of fixture t<sub>fix</sub>:
- Nominal diameter of drill bit **d**<sub>0</sub>:
- Diameter of clearance hole in fixture d<sub>f</sub>: